

An integrated glucose homeostasis model of glucose, insulin, C-peptide, GLP-1, GIP and glucagon in healthy subjects and patients with type 2 diabetes

Oskar Alskär, Jonatan Bagger, Rikke Røge, Kanji Komatsu, Niels Kristensen, Søren Klim, Steen Ingwersen, Filip Knop, Jens Holst, Tina Vilsbøll, Mats Karlsson, Maria Kjellsson

> PAGE meeting Montreux Switzerland, 30 May 2018

Pharmacometric models of glucose homeostasis

- Glucose homeostasis is a complex process
 - Several organs
 - Many glucoregulatory hormones
- Mathematical models are important tools to understand and quantify these mechanisms

Pharmacometric models of glucose homeostasis

- Glucose homeostasis is a complex process
 - Several organs
 - Many glucoregulatory hormones
- Mathematical models are important tools to understand and quantify these mechanisms
- Integrated glucose insulin (IGI) model¹
 - Glucose tolerance tests
 - Intravenous
 - Oral

Pharmacometric models of glucose homeostasis

Pharmacometric models of glucose homeostasis

- Limitations
 - Only glucose and insulin
 - e.g. incretin hormones, glucagon
 - Empirical elements
 - e.g. first phase secretion, incretin effect
 - Extrapolation properties
 - Narrow glucose dose range

Develop a mechanism-based model that simultaneously can describe important regulators of glucose homeostasis during glucose tolerance tests

- Healthy subjects and patients with type 2 diabetes (T2D)
- Wide glucose dose range

- 8 patients with T2D and 8 matched healthy controls²
- 3 oral glucose tolerance tests (OGTT)
 - 25 g, 75 g and 125 g of glucose

- 8 patients with T2D and 8 matched healthy controls
- 3 oral glucose tolerance tests (OGTT)
 - 25 g, 75 g and 125 g of glucose
- 3 isoglycaemic intravenous glucose infusions (IIGI)

- Glucose
- Paracetamol (marker of gastric emptying)
- Incretin hormones
 - Glucose-dependent insulinotropic peptide (GIP)
 - Glucagon-like peptide-1 (GLP-1)
- Pancreatic hormones
 - Insulin, C-peptide
 - Glucagon

Submodel 1

- Glucose
- Paracetamol (marker of gastric emptying)_
- Incretin hormones
 - Glucose-dependent insulinotropic peptide (GIP) Submodel 2
 - Glucagon-like peptide-1 (GLP-1)
- Pancreatic hormones
 - Insulin, C-peptide Submodel 3
 - Glucagon Submodel 4

General modeling strategy

- Observations as time varying covariates (linear interpolation)
 - Shorter run times
 - Simpler interpretation
- Start with healthy controls IV data
 - Differences between healthy and patients with T2D
- Include healthy controls oral data
 - Differences between healthy and patients with T2D

Submodel 1. Gastric emptying and glucose absorption

Stomach and small intestine

- Assumptions:
 - 4 h small intestine transit time³
 - 8% duodenum, 37% jejunum, 55% ileum⁴
 - Gastric emptying half life of non-caloric liquid, 5 min

Inhibition of gastric emptying

- Glucose in duodenum inhibit gastric emptying
- 5 min lag before gastric empting starts

Glucose absorption

- Glucose disposition FIX to estimates of the IGI model
 - Insulin dependent glucose clearance estimated
- Glucose absorbed from each intestinal segment

Submodel 2. Incretin hormones

- Half life fixed to literature values
 - GLP-1, 4 min⁵
 - GIP, 6 min⁶

Submodel 2. Incretin hormones

- Half life fixed to literature values
 - GLP-1, 4 min⁵
 - GIP, 6 min⁶
- Investigated stimulation of incretin hormones

GIP secretion

• GIP secretion stimulated by glucose in duodenum

GLP-1 secretion

• GLP-1 secretion stimulated by glucose in jejunum

Submodel 3. Incretin effect and hepatic extraction of insulin

- Started from a previously published model by Overgaard et al⁷
 - Insulin vesicles have different sensitivity to glucose

- Healthy subjects (n=64)
- Patients with T2D (n=42)

- Started from a previously published model by Overgaard et al⁷
 - Insulin vesicles have different sensitivity to glucose

- Healthy subjects (n=64)
- Patients with T2D (n=42)

- Started from a previously published model by Overgaard et al⁷
 - Insulin vesicles have different sensitivity to glucose

- Healthy subjects (n=64)
- Patients with T2D (n=42)

- Started from a previously published model by Overgaard et al⁷
 - Insulin vesicles have different sensitivity to glucose

- Healthy subjects (n=64)
- Patients with T2D (n=42)

C-peptide model

• C-peptide kinetics described by a two compartment model

Insulin model

• Insulin kinetics described by a one compartment model

Saturable hepatic extraction of insulin

• Lower hepatic extraction when insulin secretion is high

• Oral and intravenous glucose profiles overlap

- Oral glucose gives higher insulin response
- Mediated by GIP and GLP-1

- Both hormones increases
 - Production
 - Transfer from passive to active

Submodel 4. Glucagon and regulation of endogenous glucose production (EGP)

• Glucagon half life fixed to 7.5 min⁸

Glucagon secretion

• Glucose and insulin inhibit glucagon secretion

Glucagon prolonged suppression

- Glucose and insulin inhibit glucagon secretion
- Glucagon is rapidly suppressed
- Glucagon stays suppressed after glucose and insulin return to baseline

Glucagon suppression potentiated

- Glucagon production inhibited by glucose and insulin
- Inhibition potentiated over time

Initial hypersecretion in patients with T2D during OGTT

Effect of the incretin hormones

- GIP stimulates glucagon production
 - Stronger effect in patients

Regulation of endogenous glucose production (EGP)

- Glucagon stimulates EGP
- Insulin and Glucose inhibit EGP

Combining the submodels

- The submodels were combined into one model
- Evaluation performed
- Predictive performance assessed by prediction-corrected visual predictive checks (pcVPCs)

pcVPC gastric emptying, healthy

pcVPC glucose, healthy

pcVPC GIP, healthy

pcVPC insulin, healthy

Conclusions

- The model can simultaneously describe glucose, GLP-1, GIP, Insulin, C-peptide and glucagon
 - Wide dose range
 - Intravenous and oral glucose
 - Healthy controls and patients with T2D

Conclusions

- Enables investigation of
 - Drug effects on multiple sites
 - Combination treatment
- Approach of conditioning on biomarker observations and then combining the submodels was here show-cased to work well

Acknowledgements

- PhD supervisors
 - Mia Kjellsson
 - Mats Karlsson
- Colleagues at Uppsala University

